# Package: rsmatrix (via r-universe) 

July 18, 2024

Title Matrices for Repeat-Sales Price Indexes
Version 0.2.8.9001
Description Calculate the matrices in Shiller (1991, [doi:10.1016/S1051-1377(05)80028-2](doi:10.1016/S1051-1377(05)80028-2)) that serve as the foundation for many repeat-sales price indexes.
Depends R (>=4.0)
Imports Matrix (>=1.5-0)
Suggests knitr, rmarkdown, testthat (>=3.0.0), gpindex, piar (>= 0.6.0)

License MIT + file LICENSE
Encoding UTF-8
URL https://marberts.github.io/rsmatrix/,
https://github.com/marberts/rsmatrix
BugReports https://github.com/marberts/rsmatrix/issues
Config/testthat/edition 3
VignetteBuilder knitr
RoxygenNote 7.2.3
Roxygen list(markdown $=$ TRUE $)$
Repository https://marberts.r-universe.dev
RemoteUrl https://github.com/marberts/rsmatrix
RemoteRef HEAD
RemoteSha b0152ff00a5734ef2361c984a9b3f0c4515e6cbc

## Contents

rs_matrix ..... 2
rs_pairs ..... 4
rs_var ..... 5
Index ..... 7

```
rs_matrix Shiller's repeat-sales matrices
```


## Description

Create a function to compute the $Z, X, y$, and $Y$ matrices in Shiller (1991, sections I-II) from sales-pair data in order to calculate a repeat-sales price index.

## Usage

rs_matrix(t2, t1, p2, p1, f = NULL, sparse = FALSE)

## Arguments

t2, t1 A pair of vectors giving the time period of the second and first sale, respectively. Usually a vector of dates, but other values are possible if they can be coerced to character vectors and sorted in chronological order (i.e., with order()).
p2, p1 A pair of numeric vectors giving the price of the second and first sale, respectively.
f An optional factor the same length as $t 1$ and $t 2$, or a vector to be turned into a factor, that is used to group sales.
sparse $\quad$ Should sparse matrices from the Matrix package be used (faster for large datasets), or regular dense matrices (the default)?

## Details

The function returned by rs_matrix() computes a generalization of the matrices in Shiller (1991, sections I-II) that are applicable to grouped data. These are useful for calculating separate indexes for many, say, cities without needing an explicit loop.
The $Z, X$, and $Y$ matrices are not well defined if either t 1 or t 2 have missing values, and an error is thrown in this case. Similarly, it should always be the case that $t 2>t$, otherwise a warning is given.

## Value

A function that takes a single argument naming the desired matrix. It returns one of two matrices ( $Z$ and $X$ ) or two vectors ( $y$ and $Y$ ), either regular matrices if sparse = FALSE, or sparse matrices of class dgCMatrix if sparse $=$ TRUE.

## References

Bailey, M. J., Muth, R. F., and Nourse, H. O. (1963). A regression method for real estate price index construction. Journal of the American Statistical Association, 53(304):933-942.

Shiller, R. J. (1991). Arithmetic repeat sales price estimators. Journal of Housing Economics, 1(1):110-126.

## See Also

rs_pairs() for turning sales data into sales pairs.

## Examples

```
# Make some data
x <- data.frame(
    date = c(3, 2, 3, 2, 3, 3),
    date_prev = c(1, 1, 2, 1, 2, 1),
    price = 6:1,
    price_prev = 1
)
# Calculate matrices
mat <- with(x, rs_matrix(date, date_prev, price, price_prev))
Z <- mat("Z") # Z matrix
X <- mat("X") # X matrix
y <- mat("y") # y vector
Y <- mat("Y") # Y vector
# Calculate the GRS index in Bailey, Muth, and Nourse (1963)
b <- solve(crossprod(Z), crossprod(Z, y))[, 1]
# or b <- qr.coef(qr(Z), y)
(grs <- exp(b) * 100)
# Standard errors
vcov <- rs_var(y - Z %*% b, Z)
sqrt(diag(vcov)) * grs # delta method
# Calculate the ARS index in Shiller (1991)
b <- solve(crossprod(Z, X), crossprod(Z, Y))[, 1]
# or b <- qr.coef(qr(crossprod(Z, X)), crossprod(Z, Y))
(ars <- 100 / b)
# Standard errors
vcov <- rs_var(Y - X %*% b, Z, X)
sqrt(diag(vcov)) * ars^2 / 100 # delta method
# Works with grouped data
x <- data.frame(
    date = c(3, 2, 3, 2),
    date_prev = c(2, 1, 2, 1),
    price = 4:1,
    price_prev = 1,
    group = c("a", "a", "b", "b")
)
mat <- with(x, rs_matrix(date, date_prev, price, price_prev, group))
b <- solve(crossprod(mat("Z"), mat("X")), crossprod(mat("Z"), mat("Y")))[, 1]
100 / b
```

rs_pairs Sales pairs

## Description

Turn repeat-sales data into sales pairs that are suitable for making repeat-sales matrices.

## Usage

```
rs_pairs(period, product)
```


## Arguments

period A vector that gives the time period for each sale. Usually a date vector, or a factor with the levels in chronological order, but other values are possible if they can be sorted in chronological order (i.e., with order()).
product A vector that gives the product identifier for each sale. Usually a factor or vector of integer codes for each product.

## Value

A numeric vector of indices giving the position of the previous sale for each product, with the convention that the previous sale for the first sale is itself. Ties are resolved according to the order they appear in period.

## Note

order() is the workhorse of rs_pairs(), so performance can be sensitive to the types of period and product, and can be slow for large character vectors.

## See Also

rs_matrix() for using sales pairs to make a repeat-sales index.
rtCreateTrans() in the hpiR package for a feature-rich but slower and less flexible function to make sales pairs.

## Examples

```
# Make sales pairs
x <- data.frame(
    id = c(1, 1, 1, 3, 2, 2, 3, 3),
    date = c(1, 2, 3, 2, 1, 3, 4, 1),
    price = c(1, 3, 2, 3, 1, 1, 1, 2)
)
pairs <- rs_pairs(x$date, x$id)
x[c("date_prev", "price_prev")] <- x[c("date", "price")][pairs, ]
```


## Description

Convenience function to compute a cluster-robust variance matrix for a linear regression, with or without instruments, where clustering occurs along one dimension. Useful for calculating a variance matrix when a regression is calculated manually.

## Usage

$\operatorname{rs} \_\operatorname{var}\left(\mathrm{u}, \mathrm{Z}, \mathrm{X}=\mathrm{Z}, \mathrm{ids}=\operatorname{seq} \_l \mathrm{len}(\operatorname{nrow}(\mathrm{X})), \mathrm{df}=\mathrm{NULL}\right)$

## Arguments

u
Z
X
ids A factor of length $n$, or something that can be coerced into one, that groups observations in $u$. By default each observation belongs to its own group.
df An optional degrees of freedom correction. Default is Stata's small sample degrees of freedom correction.

## Details

This function calculates the standard robust variance matrix for a linear regression, as in Manski (1988, section 8.1.2) or White (2001, Theorem 6.3); that is, $\left(Z^{\prime} X\right)^{-1} V\left(X^{\prime} Z\right)^{-1}$. It is useful when a regression is calculated by hand. This generalizes the variance matrix proposed by Shiller (1991, section II) when a property sells more than twice.
This function gives the same result as $\operatorname{vcovHC(x,type='sss',~cluster=}=$ group') from the plm package.

## Value

A $k \times k$ covariance matrix.

## References

Manski, C. (1988). Analog Estimation Methods in Econometrics. Chapman and Hall.
Shiller, R. J. (1991). Arithmetic repeat sales price estimators. Journal of Housing Economics, 1(1):110-126.
White, H. (2001). Asymptotic Theory for Econometricians (revised edition). Emerald Publishing.

## Examples

```
# Makes some groups in mtcars
mtcars$clust <- letters[1:4]
# Matrices for regression
x <- model.matrix(~ cyl + disp, mtcars)
y <- matrix(mtcars$mpg)
# Regression coefficients
b <- solve(crossprod(x), crossprod(x, y))
# Residuals
r<- y - x %*% b
# Robust variance matrix
vcov <- rs_var(r, x, ids = mtcars$clust)
## Not run:
# Same as plm
library(plm)
mdl <- plm(mpg ~ cyl + disp, mtcars, model = "pooling", index = "clust")
vcov2 <- vcovHC(mdl, type = "sss", cluster = "group")
vcov - vcov2
## End(Not run)
```


## Index

$\operatorname{order}(), 2,4$<br>rs_matrix, 2<br>rs_matrix(),4<br>rs_pairs, 4<br>rs_pairs(), 3<br>rs_var, 5

